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ABSTRACT

s

A two-dimensional path generator which produces absolute
digital interpolated path control information from discrete input
cints is designed, implemented and tested. Th
are specified at equal intervals of one of the variables. A central
interval interpolation scheme is used, i.e. the path in each
interval is a section of the third order polynomial which passes
through four successive input path points including the end points
of the interval, the previous path point, and the next path point.
The polynomials are generated by three connected digital inte-
grators operating upon the respective derivatives of the poly-
nomials. Simple corrections to two of the integrators allow
changing from the polynomial appropriate in cne interval to that
appropriate to the next. Provisions are included which allow the
generation of both single valued paths and closed contours. A
scaling and error analysis of the path generator are made allow-
ing given performance criteria to be met.

A two-dimensional plotter is constructed which converts the
digital outputs of the generator into a graphical record. The
combination of the generator and the plotter represents a path

control system. Various path records of this system along with

examples of the input data preparation are presented. Qd—fﬁé’{
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CHAPTER 1

PATH CONTROL SYSTEMS

Introduction

The purpose of a path control system is to control precisely
and continuously the relationship between the output variables of
the system. The desired relationship is previously determined
and is usually supplied as a limited amount of input data. Gener-
ally the variables represent positions although this is not a
binding restriction. Definite power requirements are inherent in
the control of the variables. Although the maintenance of the
relationship between the output variables at all times is the
Primary requirement, depending on the particular application,
the maintenance of a given path velocity or a component velocity
may also become important.

The question arises how an effective path control system
might be achieved. An answer that has been widely accepted is
the use of the outputs of an accurate path generator as the inputs
to high performance power servomechanisms, one servo being |
used for each variable. Such a system is shown in Fig. 1.1.

The use of high resolution feedback elements and high gains in the
servos allows accurate following of the outputs of the path

generator by the outputs of the servos.
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A system of the form of that shown in Fig. 1.1 is the sub-
ject of this research. Before details of this are discussed,
however, an enumeration of the advantages of the use of digital
techniques in such a system and a discussion of the components

of the system will be presented.

Digital Techniques

Early path control systems were based upon analog methods
and components. 13,14,18,26™ Such systems, however, had
inherent restrictions. To remove these restrictions and to
achieve additional advantages, later systems employed digital
techniques. 47,15, 21

In a digital system, a variable is measured by the state of a
circuit or a transducer, not by the magnitude of an output signal
as is the case with analog circuits or transducers. This type of
measurement or representation reduces the effects of noise and
greatly extends possible accuracy limits. Resolution is dependent
on the number of discrete digital increments assigned to the range
of a variable. In analog systems, the resolution of each compo-

nent must be increased. This is limited by the state of the art in

component manufacture and also by the prohibitive costs of

E
The superscript numerals refer to the Bibliography.



extremely precise components. Another advantage realized by
digital systems with particular importance in the area of the path

generator is that accuracy and resolution do not degenerate with

transmission or manipulations, since linearity in am ]
and preservation of precise wave forms are not essential. Thus
during calculations or manipulations non-degenerative storage
can be easily provided.

Because of these advantages, digital techniques will be used

in both the path generator and following servomechanisms of the

system which is described in this report.

Path Generator

The path generator operates upon the limited amount of
input data to supply continuous real time information to the servos.
If the data is in the form of distinct path points, the path generator
performs interpolation. If the input data is in the form of mathe-
matical equations of the path, the generator performs a continuous
evaluation. Data in the form of path points or equations can
usually be obtained by hand calculation or limited machine calcu-
lation. The path generator is actually then a special purpose
computer which completes the processing of the input data. 10

The choice could be made of having the servos controlled

directly by a general purpose computer with beth the initial data
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processing and any interpolation or evaluation being performed
there. However, this means engaging a general purpose computer
continuously with a resultant high cost of operation. Thus, for
economic reasons, the compromise is made that any extensive
input data processing is quickly done in a general purpose com-
puter and the real time processing is handled by the path generator
leaving the general purpose machine free to perform other tasks.

Up to the present time, only incremental digital techniques
have been used in path control systems. In such techniques, a
pulse is generated by the path generator on an output variable line
for each desired increment of movement in the following servo-
mechanism of that variable. Both positive and negative increment
pulses can, of course, be generated.

If instead of providing a pulse for each desired increment of
movement of a variable and thus defining any changes with
respect to the previous value, a path gene fator could also
operate in a fashion that the absolute position number of each
variable is presented, this absolute number changing as the value
of the coordinate changes along the path to be traversed. Thus
all values are referenced to absolute points, and not to just the

previous points.



The two forms of output information available from the path
generator, i.e. incremental or absolute representation, dictate

the type of servo which must be used to accept the data.

Digital Servomechanisms

A digital servomechanism is one in which control signals in
one or more portions of the system are expressed in a numerical
code. There are two basic classifications for digital servo
sysfems corresponding to the form of the input and feedback
information: absolute systems and incremental systems. 16

A simple incremental servo system for one variable is
shown in Fig. 1.2. The input data is in the form of direction
sensitive pulses, each of which represents a desired incremental
change of the controlled variable. The time between input pulses
is indicative of the desired rate of change of the output. A
quantizer, a direction sensitive device which emits a pulse
whenever the controlled variable takes on specified values, is the
transducer used in the feedback path. Comparison is accomplished
by a bidirectional counter (BDC) which accepts both input and
quantizer pulses in such a manner as to count up for positive

transitions of the input and negative transitions of the controlled

variable, and count down for negative inputs and positive changes

of the output. Thus, the resultant count in the counter equals the
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digital error in increments. The corresponding analog signal
which is produced by the digital to analog converter (D/A) directs
the controlled system changing the controlled variable to reduce
the error.

To obtain path control, a train of pulses is supplied from
the path generator and applied to the input of the bidirectional
counter. The number of pulses supplied represents the desired
change in position in increments and the manner in which they
enter the system represents the path.

A block diagram of a simple absolute system for control of
one variable is shown in Fig. 1.3. Input data, the desired value
of the controlled variable, is in the form of absolute coded
numbers. An encoder in the feedback path converts the controlled
variable into another coded number. A comparator produces the
difference of these numbers, the digital error. The corresponding
analog signal which is produced by the digital to analog converter
(D/A) directs the controlled system, changing the controlled
variable to reduce the error.

To provide path control, one must supply as input data the
coded numbers representing closely spaced points on the desired

path. These points are supplied as a function of another
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variable such as time or a second system variable. The closer
the points are located, the better the approximation is to the

desired path.

Comparison of Incremental and Absolute Digital Servomechanisms

The following servomechanisms associated with a path
control system are usually subjected to severe enviro-ln_jz_,r;en_tal
conditions. Therefore, reliability in these is of great importance.

In an incremental digital servomechanism, pulses might be
added or lost through an intermittent component failure or noise
introduced by supply or line voltage fluctuations. These errors
may cancel one another but there is a greater probability that
they will accumulate. Since each new change is based on the
previous value, accumulated errors can cause unsatisfactory
final results. Also in an incremental servo system, power failure
results in loss of reference position. The whole process must be
started over, or at least must be referred back to some check
point.

An absolute digital servomechanism may also have spurious
errors introduced. However, since such a system is based on an
absolute reference, errors do not accumulate. Any stoppage
through a pow@r failure or other interruption does not cause

serious problems in resynchronizing the servo with the input data
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since the point of interruption can be returned to through use of
the absolute reference and operation continued.

From the above discussion, it can be seen that there are
advantages in the use of absolute digital servomechanisms.
However, these have not been used in path control applications
due to the lack of satisfactory path generators to supply continual
absolute digital path information to the servos. Therefore, this
research is concerned with the design, construction, and evalua-
tion of an absolute digital data path generator which is used to
control two absolute digital data servo systems, the combination
serving as a two-dimensional path control system.

The generator is designed to fit a '"smooth' function
through discrete path points which are spaced at equal intervals of
one of the variables. This function consists of interlaced sections
of third order polynomials. The polynomials are generated by
three connected digital integrators operating upon the derivatives
of the polynomials. Thus the path generator might be considered
as a third order interpolator. Actual input data is not the path
points but, once initial conditions are set, consists only of fourth
differences of the values of the dependent variable at the discrete

path points.
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Design details and final performance records of the
system may be found in the following body of this report.
Actual construction details are considered in Appendices

II and III.



CHAPTER II

THE PATH GENERATOR

Method of Path Generation

The two-dimensional generator of this research has been
designed to perform as an interpolator, i.e. it produces a
'""'smooth'' function from discrete path points. These path points
are specified in a Cartesian system by x and y position variables.
The only restriction upon the path points is that they be spaced at
equal intervals of one of the variables. This restriction has been
placed because, as will be seen, it results in a considerable
simplification of equipment and of input data preparation. It is
not a serious restriction since, as also will be seen, changes in
scaling and in which of the two variables has the equally spaced
requirement can be made as different portions of the path are
generated. Thus quite a wide variety of spaced points can serve
as inputs. To avoid later confusion, the nomenclature is
established that the variable along which the points are equally
spaced is called the independent variable and the remaining one,
the dependent variable.

The ""smooth" function connecting the discrete points is

formed by interlacing third order polynomials. To see how this

is accomplished, consider the path points shown in Fig. 2.1.

-13-
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Here x is the independent variable along which path points are
supplied at equal intervals h. Assume that the path has been
generated up to the point (XZ’ yz). To produce the portion
between (XZ’YZ) and (x3,y3). a third order polynomial is fitted
through the four points (xl,yl), (XZ’YZ)’ (xs,ys) and (x4, y4) .
Then only the central section of the polynomial, that between
(XZ’YZ) and (x3,y3), is actually generated, To produce the
section between (x3,y3) and (x4,y4), a third order polynomial is
fitted through the four successive points beginning with (XZ’ yZ)
and again only the central section is actually generated. This
process of fitting a third order poiynomial through four data
points and then actually using only the central section is continued
to produce the total path. The use of only the central section
gives both a look ahead and a look back feature.

The method just described is used with slight modifications
in generating other than single valued functions and in generating
discontinuous functions. Equipment limitations dictate modifica-
tions under certain other conditions. These modifications along
with starting and terminating procedures are discussed later.

The '"'smopth'" function generated can have discontinuities at
the point of change from one section to the other so that it is not

mathematically smooth. The discontinuities become smaller as
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the points fall closer to a continuous third order curve. Also
since the function is generated digitally there is an inherent

quantization effect. This quantization effect can be seen in the
output records shown in Chap
nomials, the problems arise as to how these might be generated
and also how corrections might be introduced to the generator to
change from the polynomial being generated in one section to the
one which is required in the next section. These problems will

now be discussed.

Generation of a Third Order Polynomial

A third order polynomial, y(x), can be written as

3 2
y(x) = ax” ta,x +ax+tag (2-1)

where 33,2552, and a,are coefficients. This might be evaluated
at any point x by finding the various powers of x, multiplying
them by the appropriate coefficients and adding all the terms. All
this computation must be performed for each x desired. For path
control x is usuglly constantly changing so that y(x) must be
constantly reevaluated. For real time operation such a method of

polynomial evaluation requires a large amount of fast computing

equipment. The economic requirements become prohibitive.
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Another method of polynomial generation involvestthe use of
connected integrators. For a third order polynomial the third
derivative is constant. Integration of the third derivative
produces the second derivative which in turn when integrated
produces the first derivative. Integration of the first derivative
yields the function. Thus, integrators can be cascaded as shown
in Fig. 2.2 to generate the desired function. Appropriate initial
values of the derivatives and of the function must, of course, be
set in. Now as x increases the polynomial y x) is continuously

generated. Such a technique for function generation has been used

1
previously employing mechanical integrators. 3,14

It is desired
to achieve the same results using digital techniques. So integra-

tions must be performed digitally.

Digital Integration

For the general case there exists no technique for achieving
exact integration using digital techniques. However, there are
several approximate numerical methods. Considering the amount
and operational speed of the equipment needed, the method most
suitable for use in real time path control applications is the
summation of rectangular areas approximation. To see how this

works, consider that it is desired to integrate the function y(x)
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from X5 to x, as shown in Fig. 2.3. The continuous integration

is approximated by a finite summation as

s;:1 N-1
f yx)d&x = = ylx,) Ax (2-2)
x0 i=0
*1™%0
where Ax = N xi = x0 + iAx, and N is the number of

rectangles used in the approximation. The approximation becomes
better as N is increased or correspondingly as Ax is decreased.

Notice .that since Ax is a constant

N-1 N-1
Zo Yi) ax = Ax = y(x,) (2-3)

i=0
So only the values of the y(xi) need be summed. The Ax appears
as a scale factor term.

To see how the integration might be implemented, consider
the arrangement of Fig. 2.4. Here, there are two digital
registers and connecting arithmetic circuitry. The current value
of y(x) corresponding to the current value of x is contained in the
integrand register. As the numerical approximation to the
integral,. it is desired to have the running sum of the various
y( Xi) in the integral register. This is accomplished by adding

the integrand register to the integral register every time a Ax

command pulse occurs, i.e. every time the variable x increases
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by the increment Ax. The current value of x can be maintained
by counting the Ax pulses. Notice that the integration is time
independent and depends only on the arrival of Ax pulses. The

value of y(x) is maintained by adding a

Ll 4ilZ i 4 Liia

o

the integrand register between arrival of Ax pulses.

Since this is a digital system, numbers in the registers are
contained in the form of a sign bit and a binary representation of
the magnitude. A natural binary representation will be used for-
positive numbers. However, for ease of operation of the
arithmetic circuit, a special code will be used for the magnitude
of negative numbers. This will be discussed later. At the
present let it be assumed that the arithmetic circuitry can handle
the numbers to preserve the proper sign and magnitude repre-
sentations.

The scaling rule for the integrator registers follows
directly from Eq. 2-2. This rule is that the weight of a bit in the
integral register is equal to the product of the weight of the
increment Ax and the weight of the corresponding bit in the
integrand register.

The lengths of the registers shown in Fig. 2.4 have been
arbitrarily set. For an actual integrator, these lengths are quite

important because they govern the accuracy and capacity of the
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integrator. The discussion of integrator accuracy and capacity
will be postponed, however, until the entire path generator is
designed and these considerations can be discussed for the total

system.

Generation of a Third Order Polynomial Using Digital Integrators

Digital integrators can be connected in the manner that has
previously been shown schematically in Fig. 2.2. This connection
to generate a third order polynomial is shown in Fig. 2.5. Notice
that a portion of the integral register of one integrator unit is used
as the integrand register to the next unit. Also notice that since
the third derivative of such a polynomial is constant, no updating
is needed in that register. The maintenance of new values in the
remaining registers is achieved through the action of the
connected integrators. Initial conditions are set in the registers
before starting the generation.

The integrators may be processed in either a parallel or
serial fashion. Processing in a parallel fashion can introduce
timing problems. To avoid these, serial processing has been
chosen. The processing of the integrator units is done in the

order 1, 2, 3. This leads to the following equations:

v ) = vlx) 4 oy'x) Ax (2-4)
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These are the truncated Taylor's
correspond to the appropriateyrectangular integration formulas.
Any other processing order does not lead to valid approximation
formulas.

The proper processing order is represented in Fig. 2.5 by
routing the Ax command pulses to the arithmetic units through
delay elements. The Ax pulses are accumulated in a counter to
maintain the current value of the variable x.

If appropriate initial conditions are introduced, the scheme
of Fig. 2.5 can generate any single third order polynomial.
However, the path is to be composed of interlaced polynomials.
The problem then is to change from one polynomial to the next.
As will be shown, this can be done by making corrections to two
of the integrators. These corrections will involve only a function
of the fourth differences of the dependent variable. Thus, with
the addition of correction making circuitry, the system of

Fig. 2.5 can then generate the entire desired path.
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Integrator Corrections

Before the corrections needed in the integrators at the
transition from one interval to another can be investigated, a
general interpolation formula which can be used to represent the
third order polynomial iﬁ any central interval is needed. Since it
will be shown that corrections can be represented in the form of
differences of the dependent variable, it is easier to deal with a
general interpolation formula in terms of differences. Such an
interpolation formula is developed in Appendix I.

To determine the necessary changes, consider the problem
of the transfer from the generation of the interval between
(xl,yl) and (xz,yz) of Fig. 2.1 to the interval between (xz,yz)
and (x3, y3) . For interpolation in the interval from x = x, to

1

x = x, =x, +h, the function y(x) is given, as shown in

Eq. A.1-7 of Appendix I, by

al(a -1)

2
5 A Yo (2-7)

y(xl + ah) = ¥, + o,Ayl +

a +1l)a)(a -1 3
REERTCES DL

where 0_<_ a < 1. The differences are defined in Table 2.1.

For interpolation in the interval from x = X, to x = X, = X, + h,

by a change of subscripts the appropriate interpolation function



TABLE 2.1

DIFFERENCE TABLE

X y Ay Ay A y Ay
*0 Yo
Ay, 2
*1 Y1 2 Y 3
A Ay
Y1 2 0 4
X y Ay Ay
2 2 A 1 A3 0
Y2 2 Y1 4
x y Ay Ay
3 3 A 2 A3 1
Y3 2 Y2 4
X y Ay Ay
4 4 3 3 2
Ay Ay
4 A}; 3
*5 Y5 Y4
Ay5
*6 Y6
General Relationship
m m-~1 m-1 _
A Vi A Y+l A Ve » M= 1, 2, 3, ...

0
where Ay = and A Vi = AYk
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y(x) is then given by

afa - 1) 2

Y(XZ +dh) = v, tady, +—==5—= A ¥,
(2-8)
+ {a + 1 Na)a - 1) A3
6 1

Differentiating Eq. 2-7 successively with respect to a yields

hy'(x, + ah) = Ay, + 12“—2'-—1-1 Azyo + Q‘L—z‘;'-l—)- A3yo (2-9)

hzy"(x1 + ah) = Azyo + o,A3y0 (2-10)

h3y"'(x1 + ah) = A3y0 (2-11)
Letting a = 1 in this set of equations

hy'(xz) = Ayl + :;—"Azyo + % A3y0 (2-12)

th"(xz) = Azyo + A3y0 (2-13)

Wymi(x) = A%y, (2-14)

Successively differentiating Eq. 2-8 with respect to a gives
2

hy'(x, + ah) = Ay, +—(3°‘2”—ll Azyl + 4(3‘13—"—-12 A3y1 (2-15)

hzy”(x2 +ah) = Azyl + uA3y1 (2-16)
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By1i(x, + ah) = A%y (2-17)

Letting a = 0 in the last three equations

1.2 13
by'(x,) = 8y, -3 A%y, -7 4%y, (2-18)
2 2
h y"(xz) = A’yl (2-19)
3 3
hoy'"'(x,) = A7y, (2-20)

Subtracting Eq. 2-12 from Eq. 2-18 yields

1 2 1 3
J = - — - — - -
A(hy (XZ) ) Ayz 3 A V1 -3 A v, Ayl (2-21)

2 2 1 .3 1.3
(A7) - 87yg) -5 87y -3 87y,

Therefore, as x increases through Xy 2 change in the first

derivative of - . A4y

en must be made in order to change from

0

the polynomial appropriate for the interval x, to x, to that of

1 2

the interval x_ to x_.

2 3



= 30_

Subtracting Eq. 2-13 from Eq. 2~-19 gives

2 2 2 3
A(h y“(xz) ) = A Yl - A Yo - A YO (2-22)

l
>
w
<«

So, no change is necessary in the second derivative.

Subtracting Eq. 2-14 from Eq. 2-20 produces

3
AR y(x,) ) = Ay, - Ay, (2-23)
4
= A YO
4
Ay
Thus, a change of 3— must be made in the third derivative.
h

So once the integrators are initially set, in order to
proceed through successive interpolation intervals, corrections
to only two of the integrators muﬁt be made at the interval
points. The two corrections are functions of only one piece of

difference information, the fourth difference. 13,14

Initial and Final Conditions

Initial conditions are needed in the integrator registers
before starting the generator. Suppose that the path points are
provided as shown in Fig. 2.1. The needed initial conditions
will be found from the third order polynomial which passes

through the first four points. The initial function values are the
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starting coordinates X and Yo The remaining initial conditions
are y'(xo), y! '(xo), and y"'(xo) . These are the derivatives of
the polynomial evaluated at x_. Since it is not desired to generate

0

3 : ISR 1y S R A S
ifferent polyncmlal upon réacning (2& ] 11O COrreclion 1 s

fourth difference exists and the generator proceeds in the normal
fashion.

The equation, in terms of differences, of the function
passing through the first four points was developed in Appendix I

as Eq. A-1-6 and is

Ay, AZYO
y{x) =YO+T (x-x0)+———z—(x-x0)(x-xl) (2-24)
2h
2% (x - x0) (x = %) (x - x,)
+ X=X }J{x=-x X-X
6h3 0 1 2

The various derivatives are obtained as follows.

(x) o AZY°<( )+ ( )) (2-25)
1(x) = + x=-x.) +(x -x =
y h i 0 1

————A3y°(< ) ( )+ ( ) ( )

+ X - X Xx=-x)t(x - x X - X

6h3 0 1 0 2

+ (x - xl)(x-xz))
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(%) 2% A3Y"(( )+ ( ) + ) ) (2-26)
"x) = + Xx-x)+({x-x.)+(x-x -
¥ 2 e 0 1 2
A3y0
y'(x) = 3 (2-27)

Ay, szo A3YO
2h 6h
1 AZYo . A3Yo
AZYO A3Y0
Y”(xo) = 2 + 3 ( ("h) + ('Zh) )
h 3h
1 2 3
h
A3y0
y'"(x,) = —— (2-30)
0 h3

Thus, the initial conditions for the derivative registers
have been evaluated in terms of the initial differences.

The last interval is generated by assuming that the last
fourth difference is zero, i.e. no correction is given the inte-

grators at the start of the last interval. Thus the function



-33.

generated over the last interval is a segment of the third order
polynomial which passes through the last four points.

The system of Fig. 2.5 is modified as shown in Fig. 2.6
to handle initial conditions and corrections. The basic operation
at each interval point is the addition of information from the input
data source to the appropriate derivative registers. Initial clear-
ing instructions are included if the input information consists of
initial conditions. Otherwise, no clearing is done and the
necessary corrections are added.

Use of this initial condition feature allows discontinuous
paths, i.e. paths in which there is a sharp change in derivatives
at a point, to be generated. This is done by setting in new initial
conditions to the derivative registers at the point of discontinuity.
The x and y values do not change at such a point so no provision
is needed to enter new conditions here. Thus initial conditions
are set in the output registers only at the start of any path. This
is done manually. Changing these initial conditions allowév?a:«ri‘o.us

offsets to be introduced.

Representation of Numbers

In order that an integrator unit may handle all possible
cases, both positive and negative numbers must be representable

in the registers. This implies that each register must contain a
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sign bit plus a representation of the magnitude of the number
contained. The coding of the magnitude can be done in several
ways.

A natural binary representation can be used for the
magnitude of both positive and negative numbers. If such a
scheme is used, depending on the signs of the numbers in the
registers, the basic summation operation of the integrator can be
interpreted as either addition or subtraction. A rather compli-
cated arithmetic unit with special sign circuitry then becomes
necessary. If a one's complement representation is used for the
magnitude of negative numbers, natural binary still being used
for positive numbers, special correction and interpretation
circuitry is still needed in the arithmetic unit. However, if two's
complement is used t‘o'z represent the magnitude of negative
numbers, there is no need for extra sign or function determination
circuitry. Only a straight binary adder is needed where the sign
bits, a 0 for positive numbers and a 1 for negative numbers, are
treated the same as the other bits. Overflow carrys from the
last stage are neglected.

The addition of two positive numbers according to the rules
of binary arithmetic then results in the correct natural binary

result and is still positive. The addition of a positive number and



<36

the two's complement representation of a negative number results
in the correct natural binary answer if positive or in correct two's

complement form if negative. The addition of two two's comple-

ment representations, i.e. two negative num s giv 2

correct two's complement answer.
| To verify the last two statements, consider operations
using the two positive numbers A and B. The numbers and any
| possible results are to be bounded in magnitude by 2n=-1’ i.e.
only n-1 register bits are required to represent the magnitudes of
the numbers. The nth register bit contains the sign. This
bounding is done since overflows are to be neglected in the chosen
scheme. Thus, scaling must be such that the results themselves
do not cause any overflows,

The operation A-B is achieved by implementing A+(-B).

The two's complement representation of (-B) considering the sign
is (Zn-B). Physically, the two's complement of a binary number
is formed by complementing éve ry bit of the number, including
the sign bit, and then adding 1, i.e. the one's complement,
2™-1-B, is first formed and then a 1 is added to give 2"-B, the

two's complement. Then,

A+(-B) = A+(2"-B) = 2"+ (A -B) (2-31)
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If A> B, there is an overflow 2™ and the positive number (A-B)

n .
results. If A< B, A+ (-B) =2" - (B - A) which is the correct
two's complement representation.
Using proper two's com

operation (-A) + (-B) is performed as

(-A)+ (-B) = 2" - A) + 2" - B) =27 + (2" -(A + B) ) (2-32)

Thus, an overflow 2" results and the correct answer, a negative
number, is in two's complement form.

Because of the described advantages, two's complement
representation of negative numbers will be used in the integrator
registers of the path generator. Since the feedback elements in
the following servomechanisms are usually coded disks with
representations that can be considered only in the positive range,
the final outputs need only be positive numbers. Therefore, no
conversion problems exist at the output. Input data, if negative,

mubt be converted to a two's complement representation.

Arithmetic Unit

The arithmetic unit of an integrator must perform an
accumulative summation, i.e. upon command the contents of the
integrand register must be added to those of the integral register,

the results appearing in the integral register. Since, through use
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of two's complement representations, all operations have been
reduced to binary addition, a simple ripple-carry binary adder as
shown in Fig. 2.7 suffices. A parallel adder has been chosen to
allow faster operation of the integrators. The logic symbols used
here and in later diagrams are standard and are defined in the
List of Symbols.

The adder is based upon transition coupled flip-flops, i.e.
flip-flops which change state upon receipt of a level change in a
given direction at a "T" input. The method of operation is as
follows.

Upon command, the 1's of the integrand register are
simultaneously gated into the '"T'" inputs of corresponding flip-
flops in the integral register. Each flip-flop which receives an
input changes state. A 1 to 0 transition means that a carry to the
next stage is generated. Any carryis delayed, however, before
it is gated to the "T" input of the next stage flip-flop. This delay
prevents nearly simultaneous arrival of inputs to a flip-flop and
insures reliable operation.

As can be seen, this type of adder operates upon carrys
asynchronously. A finite settling time is needed before all
transitions are completed and the correct answer appears in the

integral register.
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To allow for the proper accumulation to take place, an
integrator unit of the path generator has an integral register
which is much longer than the integrand register. If the sign of
the contents of the integrand register is positive, no special
arrangement is needed to match its length with that of the integral
register. If the sign of the integrand register is negative,
however, in order to present the correct two's complement to
the integral register, the length must be extended through use of

the sign bit as shown in Fig. 2.7.

Special Features

In the examples of path generation in this chapter, x has
always been the independent variable and y the dependent
variable. In this, the normal mode of operation, the increment of
the independent variable is added to the x output register and the
first derivative register is added to the y output register. If this
mode were fixed, however, an extremely large first derivative
register would be required to generate all possible path slopes.
To avoid this, so that a generator can be constructed using a
modest amount of equipment, the decision is made that for a slope
greater than 1 the roles of x and y will be interchanged. Thus,

the maximum value that need be contained in the first derivative
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register is 1. Special considerations must be taken in the input
data preparation as a result of this restriction.

The implementation of the path generator incorporating
the interchange feature is shown in Fig. 2.8. Here, the address
of the independent variable is supplied by the input data source.
This address controls the gating to the x and y registers and
governs which recéives inputs from the first derivative register
and which receives the independent variable increment.

Under certain conditions, it may be desired to change the
basic scale of the independent variable or to change the inter-
polation direction along this axis. Scaling changes are achieved
by changing the weight of the added independent variable increment.
Positive direction is achieved by adding the increment; negative
direction, by adding the two's complement of the increment. The
increment weighting and direction are also specified by the input
data source.

Use of the initial condition, variable interchange, scaling,
and interpolation direction features allows closed contours to be
generated. An example of this is presented in Chapter IV.

Since paper tape will be used as the data source in the
final constructed system, it is shown as such in Fig. 2.8.

Control of the tape reader and integrators is represented only in
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block diagram form here. Considerations of actual control
circuit design will be postponed until the integrator registers

are scaled.




CHAPTER III

SCALING, ERROR ANALYSIS, AND

FINAL DESIGN OF THE PATH GENERATOR

In order to complete the desig
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weights of the most significant and least significant bits of each
register and the normal weight of the increment of the independent
variable must be determined. The basic interval between
corrections must also be assigned. All scaling will be performed
in units. The physical weighting of a unit is assigned by the
following servomechanisms.

The weights of the most significant bits of the registers
can be determined using equipment limitations and restrictions on
the allowable functions which can be generated. An error
analysis of the connected digital integrators must be made in order
to determine the remaining weights.

First, for convenience, let the basic interpolation interval
along the independent variable axis be 23 = 8 units. Any other
power of 2 could just as conveniently be chosen as the interval.

A choice of other than a power of 2 as an interval introduces

considerable hardware complications.

=44



~45a-

Determination of Weights of Most Significant Bits

The weight of the most significant bit of an output function
register is chosen as 26 units to correspond with the most signifi-
cant bit of the feedback encoder disks used in the following
servomechanisms.

The limit has been set on the first derivative that its
absolute value be < 1. To correspond with this restriction, the
most significant bit of the first derivative register is assigned
a weight of 2°. This weighting actually allows a maximum slope
bounded by 2 units when contributions from the remaining bits are
considered. Thus, for slight trespasses on the limit of a slope
of 1 no switching of the x and y roles is necessary to continue
generation of the function.

Using the limit set on the first derivative, let the limit be
set on the second derivative in the following way. Consider that
the second derivative is at its maximum value throughout an
interval. This maximum value should be large enough to cause
the first derivative to change from a maximum positive value to a

maximum negative value or vice versa. That is,

8
[ olmea e -2
0
or 2 -2
ly"=) |, =5 = 2 (3-1)
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This is an absolute upper bound and can be approached using a
. s e . R -3
register whose most significant bit has a weighting of 2
To set the upper bound on the third derivative, consider
that it is at its maximum value throughout an interval. This
should be large enough to cause the second derivative to change

through half the possible range. That is,

8
[ 1yl o= 2
0
|y | =27 (3-2)

This again is an absolute upper bound and can be approximated
using a register whose most significant bit has a weight of 2-6
All upper bounds have now been set on the integrator
registers. These bounds limit the class of functions that can be
produced by the path generator. However, since the bounds have
been set quite conservatively, resulting problems should be at a
minimum. An error analysis of the connected integrators must

now be made in order to determine the remaining unknown

weightings.
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Error Analysis of Connected Digital Integrators

. . . . 2,5,12
Integration by digital means is not an exact process. "’

Truncation error is introduced by the finite summation approxi-

must be rounded off or quantized. Thus, a roundoff error is
introduced in the output. In the following, expressions for the
truncation and roundoff errors in the output of a single digital
integrator are first derived. These expressions are then used to
analyze the three connected integrators of the path generator. In
this analysis only the error in the output, or dependent, variable
will be of concern. The independent variable, in this analysis
X, can be maintained exactly by accumulating command increment
pulses.

A single integrator is shown schematically in Fig. 3.1.
The quantity f(x) is inserted in the integrand register. The
quantity f f(x) dx with the appropriate initial conditions and
limits is desired in the integral register. What is actually
achieved is the summation Z f(xi) Ax, again with the appropriate
initial conditions and limits.l The difference between the integral

and the rectangular approximation represents the truncation

error, Et(NAx).
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! N-1
Et(NAx) = j f(x) dx - i?O f(xi) Ax (3-3)
*0
X, = X,

i

0
where Ax = -~ N is the number of rectangular segments

used in the approximation, and X, =%, + iAx. Expressing the

integral as the sum of integrals and moving the summation sign

gives x,+Ax
N-1 !
Et(NAx) = = [ f f(x) dx - f(xi) Ax] (3-4)
i=0 xi
For ff(x) dx = F(x),
N-1
E t(NAx) = = [ F(xi + Ax) - F(xi) - f(xi) Ax] (3-5)
i=0

The Taylor's series expansion of F(xi + Ax) is

.Iff“(x. + B Ax) (Ax)2
F(x, + Ax) = F(x) + F'(x.) Ax + L 5 (3-6)

where the last term is Lagrange's form of the remainder which
results when the series is truncated after the term containing the

first derivative and 0<B <1l. The parameter  must be

determined for each different function.
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Substituting Eq. 3-6 into Eq. 3-5 and recalling that

FY(x) = f(x), - §"'(x) = f'(x), and X, = x, +1iAx yields

0

N-1 f'(xo + {Ax + B Ax) (Ax)2
z

E (NAx) =
t i=0 21
or,
2 N-1
ENa) = B Tz ni(x 416k + p o) (3-7)

i=0

Evaluation of this awaits knowledge of the nature of f'(x).

If 2 number cannot be represented exactly within the
finite register length of the integrand register, it must be
rounded off. Due to the nature of the operation of the integrator,
this is not a rounding off of the least significant representable bit
to the nearest value but instead is a neglect of all bits less than
the least significant bit. Thus the upper bound on the roundoff
error in the integrand register is the weight of its least
significant bit. The use of a longer register so that the bits that
are dropped have a very small weighting reduces this error.
Howéve r, since the contents.of the integrand register are used
many times, even slight errors accumulate and can have a

significant effect on the output.



-51-

Without dealing with specific functions, the actual amount
of roundoff error cannot be determined. An upper limit can be
found, however. Let a weighting é be assigned to the least
significant bit of the integrand register. The error in the
integrand will be less than § at each step. Then Er(NAx), the

value of the roundoff error in the integral register after N steps,

is
N-1
Er(Ax) < T & Ax
1=V
or,
E_(NAx) < N& Ax (3-8)

The total output error, E, is the sum of the truncation error Et

and the roundoff error Er’ or

E=E +E_ (3-9)

Then,

(Ax)z N-1
E(Nax) <[ —— Z f'(x0 + iAx + B Ax)] + Né& Ax (3-10)

i=0
This is the output error for only one integrator unit. If
the output of one integrator serves as the input of another, then
the error of the first integrator is reflected in the output of the
second. Thus in the connected integrators of the path generator,

errors can be compounded. This compounding of errors will now
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be investigated using as a model the representation of the path
generator shown in Fig. 3.2. Here, and throughout the remaining
discussion on scaling, Ax represents the normal command incre-
ment of the independent variable.

Any error in the output of the third integrator unit, E3, is
reflected through the two other units. Thus, any slight error here
can be compounded into a serious error in the output function. It

is important, therefore, that the error E_ be kept as small as

3

possible. To do this, let the output roundoff error, E _, be zero.

r3
This means that any initial conditions or corrections to the third
derivative register must be entered exactly.

As was shown in Eq. 2-30, any initial condition to the third
derivative register is a third difference divided by h3, where h
has already been chosen as 2-3 units. Let the least significant
bit of the third derivative register be given a weighting of 2-=12
units. Then the third difference must be specified exactly by a

binary number whose least significant bit has a weighting of

2-12

—g = 277 units. This means that the restriction must be placed
e
that the dependent variable of any given path point must be

specified exactly by a binary number whose least significant

. -3 . . . s
bit represents 2 = units. As a result of this restriction on the
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dependent variable, any correction to the third derivative
register which is a fourth difference divided by h3 is also
specified exactly to 2_3 units.
igure of 2 units as the wei
significant bit of the third derivative register has been chosen so
that this register is eight bits long, seven magnitude bits and a
sign bit. Inputs from one line of eight level paper tape can thus
be easily made.

Since roundoff error has been eliminated, the output error
E3, which is the error in the second derivative, is then due only
to the process of digital integration. Eq. 3-7 can be used to find
this error. Notice that the third derivative is a constant for any
third order polynomial being generated. Thus, the
f3'(x0 + iAx + B Ax) to be used in Eq. 3-7 is g—}—{» (y''*(x) )lxo-FiAx+(3 Ax
equal s the derivative of a constant and is therefore zero. The

digital integration error is then also zero. Thus, the total output

error is zero, i.e.
E3(NAx) =0 (3=-11)

The output error of the second integrator unit, which becomes the

error in the first derivative, can now be found using Eq. 3-10,
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Thus,
(Ax)z N-1
E (NAx) < [-———— > f '(x + iAx + BAx)] + N6 Ax(3-12)
2 2 120 2 0 2

where § > is the weight of the least significant bit of the second

derivative register which is used as an output to the first deriva-

tive register. For the second integrator unit, fZ(x) = K,x where

K3 is the value of the third derivative and is a constant. Then,

' : - -
£,'(x + 1% + B2X) = K, (3-13)
Substituting this into Eq. 3-12 gives
2 N-1
E (Nax) < [$29° 5 k] +Nb.Ax (3-14)
2 2 5, 3 2
or,
E (NAx)<-f-A—x)—2-NK + N& ,Ax (3-15)
2 2 3 2

The first integrator unit operates upon this error and
introduces error of its own to give an error in the output

dependent variable of

(Ax)z N-1
El(NAx)< [—2—— = f '(x,+iAx +B Ax)]+ N6 Ax
i=0 1 0 1
N-1
+ = E, (i) &x (3-16)

i=0
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where § 1 is the weight of the least significant bit of the first

derivative register which is used as the output to a function

register. Here
fl'(xo-!-iAx-!-ﬁAx): K"2 + K3(x0+iAx+ B Ax) (3-17)

where K_Z is the initial value o

| (Ax) . Ax
El(NAx) <_,[ 5 i?g [KZ + K3(x0 tidx + 3 )] + N& 1 Ax
N-1 2
+ [L—A") iK, +i6 Ax] Ax (3-18)
. 2 3 2
i=0
Evaluating the summations gives
(Ax)z Ax N2 - N
E,(Nax) < 252Nk, + NK, (%, +5) + — K3Ax]+ Né  Ax
2 3 2
N° - N (Ax)”  N" - N 2
t— Ky "5——+— 5, (Ax) (3-19)

Collecting terms then gives the final error of the output of the

first integrator unit as
K, Ax &
23— +h (3-20)

EI(NAX) < (Ax)2 N

62Ax K,Ax x (AX)ZK3 K, Ax
+ AxN (6 1 + - + )
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This then is the error in the generated function. Setting a limit

on this will allow § 1’ 6 2 and Ax to be determined.

Determination of Weights of Least Significant Bits

In order for Eq. 3-20 to be used in determining the
remaining weights, a maximum allowable error limit must be set
on the generated function. Let this limit be one unit for a third
order polynomial generated over the maximum range of the
independent variable. If a different limit is desired, similar
procedures can be followed to achieve proper scaling.

First, let the error contributed by a part of Eq. 3-20 be

1
less than or equal to 5 unit, i.e. let

%2

2

(Ax)‘2 N2 + 6  AxN < 1

(AN < = (3-21)

. . . 7
For generation across the maximum interval, NAx =2 ', or

6 2
2,7 7, 1
s @) +s5, @< (3-22)
Eq. 3-22 is satisfied if
5, = 277 (3-23)
and
5. =210 (3-24)
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In order to stay well within the specified error limit, let the

remaining portion of Eq. 3-20 be

2
K,Ax K,Axx, 6 Mx (Ax) K
2 _2 3 0 2 3
(Ax)” N ( 5 ) + AxN { 5 -—- 3
KZ 1
t— )f_z (3-25)

As will be seen, the two underlined terms are very small com-
pared to the remaining terms in the last bracket and will be

neglected. Regrouping the remaining terms of Eq. 3-25 then
gives

K,(a%)° N K, (ax)° N

5 (AxN + x ) + ———— <

1
ot

3 (3-26)

The bracketed term here has a maximum value of 27, the

ﬁnaximum range of the independent variable. Once K2 and K3 are

determined, Eq. 3-26 can be solved for Ax.

The maximum values of K2 and K3 can be found considering

that the slope of the generated path is bounded by an absolute value
of 1. Thus, the maximum value of any change in slope is 2. This

slope change is produced by the output of the second integrator
K3 x‘2
unit, — + sz . So to determine the maximum values, let

sz

3
— -2
5 + KZx_<_2 (3-27)
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. . 7
Since x has a maximum value of 2,

K 2

> (2") +k, 2)) <2 (3-28)

o]
=
|

5 = 0, the maximum value of K3 which solves this equation is

-14

K3 =2 (3-29)
max
1f K3 = 0, the maximum value of K.2 which satisfies Eq. 3-28 is
K, =276 _ (3-30)

Now using these values for K, and K_, Eq. 3-26 becomes

2 3
-14 -6
a2y +i— (2 <t (3-31)
2 2 -4
or,
i‘zi+ Axfz'z (3-32)
or considering only a power of 2,
-3
Ax <2 (3-33)

-4
Let Ax be 2 ', then, since this satisfies Eq. 3-33. All register

weights have now been determined.

Final Design

The weightings that have been determined and the scaling

rule developed in Chapter II are used to obtain the final block
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diagram for the path generator. See Fig. 3.3. The numbers
included in the register bits represent the weighting of that bit in
a power of 2. Notice that the registers of the two lower integra-
tor units are lined up so that the weight of an integral register bit

is equal to the weight of the corresponding integrand register bit
times the weight of the independent variable increment, 2°4.

This same scaling rule is followed in the top integrator unit
through use of internal circuitry in the arithmetic unit and gating
block. The necessity of showing the interchange feature prevents
the physical lining up of the block diagram representations of

the output registers with the first derivative register. During
operation, then, the 20 bit of the first derivative register is
added to the 2-4 bit of the dependent variable output register, etc.
Under normal scaling, the independent variable increment is
added to the 2-4 bit of the independent variable register. Recall
that input information determines whether x or y is the inde-
pendent variable.

In actual implementation, the registers will consist of
flip-flops. Then, the connecting arithmetic units, shown here
only as blocks, will be of the same type shown in Fig. 2.7.

Various control lines are shown in Fig. 3.3. For proper

functioning of the path generator, these must be operated so that
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the control flow diagram of Fig. 3.4 is followed, This flow
diagram implies the use of two gated counters, one to govern the
cyclic additions of the integrators (Add Control), and one to
provide tape reading control, setting of the gating, and control of
inserting initial conditions or corrections (Input Control). For
this reason, the control is represented in Fig. 3.3 by two blocks
with the appropriate control lines emanating from the blocks.

The actual implementation of the path generator of
Fig. 3.3 is described in Appendix II. The outputs of the path
generator provide inputs to a two-dimensional plotter. This
plotter, whose construction is described in Appgndix III,
represents the system to be controlled. Graphical output records

from the combined systems are shown in the next chapter.




INPUT CONTROL
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SET ALL COUNTERS TO ZERO. SET
BLOCK READER TO READ FIRST TAPE BLOCK

'

.

CHECK IF
INITIAL CONDITIONS ARE
TO BE ENTERED IN THE
DERIVATIVE REGISTERS

YES ‘ NO

CLEAR DERIVATIVE
REGISTERS

(INITIAL  CONDITIONS OR
CORRECTIONS)

ADD CONTENTS FROM TAPE TO
THE DERIVATIVE REGISTERS

| SET INTERCHANGE GATING }—=! SIGNAL

FOR

TAPE _ADVANCE

ADD FIRST DERIVATIVE REGISTER TO

DEPENDENT VARIABLE REGISTER AND
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(ADD LINE 1)
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FIRST DERIVATIVE REGISTER
(ADD LINE 2)

]

ADD THIRD DERIVATIVE REGISTER TO
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(ADD LINE 3)

!

CHECK IF \ NO
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ADD | TO
ITERATION
COUNTER

ENOUGH ADD CYCLE
ITERATIONS HAVE TAKEN

PLACE TO COMPLETE

RESET ITERATION
AN INTERVAL YES COUNTER

FIGURE 34 CONTROL FLOW DIAGRAM



CHAPTER IV

EXPERIMENTAL RESULTS

The path generator has been constructed using the Digital
Synthesizer of the Case Digital Systems Laboratory. This
Synthesizer features modular logic units which are connected
using removable wired program boards.

Inputs to the generator are provided by a paper tape block
reader. Each block of input tape contains the information to
aliow path generation over one interval of the independent
variable. The use of a block reader eliminates the need for
intermediate internal storage and simplifies the gating in of input
information.

The outputs of the generator are used to control a two-
dimensional plotting table. Each axis of the table contains an
absolute digital servo drive. The plotter table produces a
graphical record of the generated path.

A photograph of the combined elements is shown in Fig. 4.1.
The Synthesizer is shown in the left background, the plotter table
in the center, and the servo drive electronics and tape block

reader at the right.

b4~



FIGURE 4.1 PHOTOGRAPH OF PATH
CONTROL SYSTEM
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It was pointed out in Chapter II that the path generator
normally produces a single valued continuous path. However,
modifications introduced by instructions on the input tape allow the
use of the basic manner of operation to produce other types of
paths. Thus, the clearing and setting in of new initial conditions
in the derivative registers allows the generation of sharply dis-
continuous paths. Changing the direction of interpolation along
the independent variable axis and/or the assignment of x or y as
the independent variable allows various types of closed contours
to be produced. The restriction on the magnitude of the first
derivative means that a combination of these modifications must
be used to generate certain paths.

To illustrate these features, two examples of path generation
and the required data preparation will now be presented. The first
will discuss a closed contour composed of various types of
segments. The second will be concerned with the generation of a

spiral.

Example 1
The path of this example is composed of various types of
segments. Each segment is used to demonstrate a different type

of path which can be generated. The path record produced by the
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plotter table is shown in Fig. 4.2 along with the points through
which the path should pass.

The section between points 1 and 9 demonstrates the
possibility of linear interpolation in the generator for a slope
magnitude less than 1 with respect to the x axis. The segment
between points 9 and 16 shows the normal third order interpolation
feature where +x is the independent variable. The section between
points 16 and 23 presents straight line generation along the y axis.
The portion between points 23 and 28 shows third order interpola-
tion with +y as the independent variable. The section between
points 28 and 39 shows straight line generation along the x axis.
The last segment, between points 39 and 41, demonstrates linear
interpolation for a slope magnitude greater than 1 with respect to
the x axis. Further discussion of the path record will be given
after the input data preparation is presented.

The coordinates of the path points along with the appropriate
differences are tabulated in Fig. 4.3. The path points and
differences are grouped according to path segments. For each
path segment, the sign and address of the independent variable is
given to the left of the grouping. The differences are then taken

of the other variable. Using the data contained here, the
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information to be entered on the control tape of the generator can
be found.

Each tape block consists of seven lines. The information is
entered on to the tape according to the format shpwn in Fig. 4.4.
Thus, the first three lines provide information for the first
derivative register. The next two contain information for the
second derivative register. The sixth line provides inputs to the
third derivative register. The seventh line gives gating control
information, a stop instruction, and a preliminary clearing
command when initial conditions instead of corrections are to be
added to the derivative registers. The gating control information
consists of the address and sign of the independent variable.
Normal operation is with +x as the independent variable. Any
changes to this must be entered. Holes are punched in the tape
for 1 data bits and for commands. A O or the absence of a
particular command or gating signal is represented by blank tape.

Initial conditions to the derivative registers are entered
from tape at the start of the path and at the beginning of each new
path segment. These are calculated according to Eqs. 2-28, 2-29
and 2-30. Examples of initial condition calculations and conver-
sion to the proper tape coding are given in Appendix IV. Fourth

difference corrections are entered in the first and third derivative
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FIGURE 4.4-— TAPE FORMAT
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registers at the other interval points. Initial conditions for the x
and y registers at the start of the path are not obtained from the
input tape but must be set in manually.

Since the derivative register initial conditions are calculated
so that the path passes through the first four points of a segment,
no correction is made at the second point of each new segment.
Also since the final portion of each segment is to be the third order
polynomial which passes thwrough the last four points, no correction
is made at the second to last point of each segment. For segments
shorter than three intervals, i.e. segments which pass through
less than four path points, lower than third order interpolation
must be used. This condition is demonstrated better in Example 2.

Tables which allow the fourth difference corrections to be
entered in the proper coding on the control tape are given in
Appendix IV. Tables A.4-1 and A.4-2 give entries to the three
~ lines of tape which provide inputs to the first derivative register.
These tables give the proper coding for - gl-h— A4 (dependent
variable). Remember that a straight binary coding is used for
positive numbers and a two's complement coding is used for
negative numbers. The interval h was chpsen as 23 units. Table
A. 4-3 gives the coding for LS A4 (dependent variable) which is

h
the correction term to the third derivative register. Recall that
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no corrections are needed for the second derivative register.
Initial conditions must be introduced there, however, at the start
of each new path segment.

Using the tabulated fourth differences, the coding tables,
and the calculated initial conditions for each new interval, the
information in the control tape which will allow the generation of
the closed contour is then given in Fig. 4.5. Each tape block
presents information which allows generation of the path over the
next interval.,

Returning to a discussion of Fig. 4.2, notice that due to the
quantization effects of both the generated data and the plotting
table and error in the path generator, the generated path does not
always pass through the desired points exactly. However, there
is never more than one unit error in any coordinate direction.
The path does not close exactly, a one unit error remaining in
the y direction at the end of the contour. This is due mainly to
the quantization effect of the output of the generator. The final
error determined by observing the total contents of the y output

register is approximately 1/4 unit.

Example 2
The only feature not demonstrated by Example 1 is the use

of variable inter change when the magnitude of the path slope
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changes through 1. Actually, the selection of interchange points
can be made for slope magnitude values anywhere between 1/2
and 2 since the upper bound on the capacity of the first derivative
register is 2. Thus the selection of interchange points is not too
critical.

The interchange feature is now demonstrated through genera-
tion of a spiral. The output record along with the input path
points is shown in Fig. 4.6. The independent variable inter-
change is made at points 14, 20, 23, 26 and 28. For the segments
between points 1 and 14, 20 and 23, and 26 and 28, x is the
independent variable. For the first and third of these segments,

a positive interpolation directions is used. For the second
section, interpolation takes place in the negative direction. For
the remaining segments, y is the independent variable. A
positive interpolation direction is used between points 14 and 20,
and 28 and 30. A negative interpolation direction is used
between points 23 and 26.

The coordinates of the path points along with the appro-
priate differences are tabulated in Fig. 4.7. For each path
segment, the sign and address of the independent variable is

again given to the left of the segment. The differences of the
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other variable are then taken. The information to be entered in
each tape block can be found using this data.

At each interchange point new initial conditions are intro-
duced. Example of initial condition calculations are given in
Appendix IV. The coding tables of Appendix IV are used in the
same manner discussed in Example 1 to convert the fourth
differences corrections to the proper tape coding.

The control tape information to allow generation of the
spiral is then given as shown in Fig. 4.8. Again, no corrections
are needed at the second point of a path segment or the next to
last point of a segment. Notice that the last two segments only
pass through three path points. Thus only second order interpo-
lation is available here.

As in the previous example, due to quantization effects and
error in the generator, the generated path of Fig. 4.6 does not
pass through the desired points exactly. Notice, however, that
there is never more than one unit error in a coordinate direction.
Despite the many interchanges between x and y as the independent
variable which must be made to produce this path, the generated
path does pass through many of the path points including the final
point with no error. This is a good indication of the accuracy of

the path generator.
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In these examples, no attempt was made to achieve a high
plotting speed, the control clock frequency being only 150 cps.
The plotting speed was limited by the dynamics of the plotting
table. A separate test on the path generator alone indicated a
reliable operation up to a control clock frequency of 1.6 KC/sec.

The basic interpolation interval for these examples was
fixed at eight units. No provision for independent variable scale
changing was incorporated in the final implementation due to a
lack of sufficient logic in the Digital Synthesizer.

The quantization level of the plotting table has purposely
been chosen quite course so that the accuracy of the path
generator can be seen. A smaller quanta size would not allow

the generator accuracy to be observed as readily.

Discussion of Desijn Features

The basic interpolation interval h was set for convenience
at a nominal value of 8 units. Depending on size and speed
requirements, it may be desirable to increase this interval.
Following the design procedures outlined in this research, a
design for a different basic interval could easily be accomplished.

No attempt has been made here to achieve constant path
velocity. A constant component velocity, that of the independent

variable, is maintained however, Considering the slope
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limitations on generated paths, this means that path velocity is
controlled within 41 percent. If more accurate path velocity
control is desired, first difference information can be used to

determine the average slope over an interval, Using this as an

regulated to give path velocity control with a maximum variation
of 20 percent. For slowly changing paths, the velocity variation
would be much less. If better velocity control is desired, more
extensive and expensive equipment is needed. 2 Control of path
velocity to maintain other parameters such as a cutting tool
temperature may be desired.29 Again, rather extensive equip-
ment is needed.

The integrator units in the path generator of this research
have been implemented using flip-flop registers. As the registers
become longer to accomodate greater capacity and accuracy, the
use of drum storage or delay line storage shows greater economic
advantages. 4,10

The outputs of the path generator have been interpreted in a
x~-y Cartesian coordinate system. However, this is not a limita-

tion. The outputs could also be interpreted as polar coordinates,

i.e. the independent variable output could be interpreted as a polar
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angle and the dependent variable output as a radius vector.
Continuous contours in which the origin of the coordinate system
s s . ... 13,14
is inside the contour could then be generated quite easily.
The path generator described here has produced inputs for
digital servomechanisms, the combination of the generator and
the servos serving as a path control system. However, the path
generator is by no means limited to such an application. It can

also serve to provide information for computing or other control

applications.

Summary

The general features of path control systems and the
advantages of absolute digital data systems were discussed. A
two-dimensional absolute digital data path generator which
produces interpolated path control information through discrete
input path points was designed and constructed. The generator
provided inputs to a digital plotting table, the combination of the
generator and the plotter representing a path control system.
Details of input data preparation for the system in order to gener-
ate two desired paths were presented. The path records produced
by the system were given. Examination of these records showed
that the desired paths were generated within the designed system

error limits.



APPENDIX 1
DERIVATION OF THIRD ORDER INTERPOLATION FORMULA

It is desired to find the equation of the central section of
the third order polynomial which passes through the four successive
points shown in Fig. A.1l.1. These points are spaced at equal
increments, h, of x, the argument. Coefficients of the polynomial
are desired in the form of functions of the differences of the values
of the polynomial at the points. These differences are defined in
Table 2.1.

To start, let y(x) be the polynomial. It may be written in

the form

y(x) = ag+ al(x - xg) + az(x - xo)(x - xl) (A.1-1)

+ a3(x - xo)(x - xl)(x - xz)

By successively substituting the values of the coordinates of the
four points into this equation, the coefficients ag ay 2y, and a,

can be evaluated.

At x = x, y(xo) =Yg =2 (A.1-2)

=83~
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At x =x, y(xl) =Y, =y0-l-al(x1 -xo) {
Yy - Yo Ay
1 0 0
or, 3 == (A.1-3)

Ay
- 0
At x = x,, y(xz) =Y, =Yo t (xz - xo) + az(x2 - xo)(xZ - xl)

Ay
_ 0 2,
= YO = (2n) +a2 (2K7)

2
Y- 21 %Yy By,
or, a, = > =— (A.1-4)
2h 2h

V1" Yo
At x = x, y(x3) =¥Y3 =Yyt — (x3 - xo)

Y, =2y, ty,
+ ) (x5 = %) (x5 = x;)
2h

+ a3(x3 - :'f:o)(x3 - xl)(x3 - xz)

Y2 -2ty

2h2

V-

=yt —— 0.(3h) + (3h) (2h)

+a,(3h)(2h)(h)
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_ - (A.1-5)

or, a, =
3 6h3 6h

3y

Using the determined values of the a's,

2
Ayq Ay,
‘,’(X) = ‘Jro +T (X XO) + th (X = “O)(x - xl)
A3yo
t— (x - xo)(x - xl)(x - XZ) (A.1-6)
6h

This is the equation of the polynomial through the four points.

Now consider only the central section, i.e. let x = Xy +ah

where 0§a_<_1.»

Ayo
Then, y(x1 + ah) = Yot 5 (x1 +ah - xo)
A%y,
t— (x1 +ah - xo)(x1 + ah - xl)
2h
A3y0
t—3 (xl +ah - xo)(x1 + ah - xl)(x1 +ah - XZ)
6h
Simplifying,
2
A Yo

y(x) +ah) =y + Ay, (@ + 1) +—— (a + 1)(a)
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3
Ay

6

0
+

(@ + I){a)(a - 1)

2
Ayo
=¥t Ay, tadyy +—— (a + 1)(a)

3
A Yo

3 (a + 1)(a)(a -1)

+

vy taly, - yg) +aly, - 2y, +y,)

AZYO A3Y0
+— (a)(a - 1)+ 7 (@ +1){a)a - 1)
Finally,
Azyo
y(x1 +ah) = v, * a.Ayl t—=— (a)(a - 1) (A.1-7)
A3y0
t—2 (@ + 1)(a)(a - 1)

This is the same as the Newton-Gauss central difference inter-

polation formula when fourth and higher order differences are

’ 17,24, 30
zero, as they would be for a third order polynomial. 7.24,3



APPENDIX II

DETAILED DESCRIPTION OF PATH GENERATOR

The purpose of this section is to describe the design and
construction details of the digital path generation unit which has
been shown in block diagram form in Fig. 3.3. The main areas
of discussion will be the path generator, the control logic, and the

input tape equipment.

Path Generator

The path generation unit was constructed using the Digital
Synthesizer of the Caée Digital Systems Laboratory. See the
photograph of Fig. A.2.1.. The Synthesizer contains transistorized
digital logic modules mounted on racks inside the main cabinet
which is shown at the left. The input and output connections of
the modules are brought out to the receiver pictured at the lower
right. Power supply wiring is contained internally. A removable
board which fits into the receiver unit contains the desired
connecting plug-in wiring. A small receiver board which contains
facilities for connecting in auxilliary logic modules and also
contains the indicator light connections is shown on the extreme

right. Jacks for providing external inputs and outputs to the

-88-
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FIGURE A.2.| PHOTOGRAPH OF
DIGITAL SYNTHESIZER
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Synthesizer along with indicator lights and a pulse generator are
mounted in the main cabinet.

The use of removable wired program boards makes the
Synthesizer a valuable research tool. Merely by switching
boards the connection of the logic modules needed for one project
can be changed to the connection needed for anbther one.

The logic elements contained in the Synthesizer were manu-
factured by Wang Laboratories, Inc. They are designated as
Series 200 LOGIBLOC Transistorized Module Building Blocks.
The maximum operating frequency of these elements is 200 KC.
The schematic diagrams for the circuits used in constructing the
path generation unit are given in Figs. A.2.6 and A.2.7.

The connection of the logic elements of the Synthesizer used
to construct the path ggnera.tor is shown in Fig. A.2.2. The
binary weightings of the flip-flops of the various registers are
labeled. The numbereci points are connected to the corresponding
points of the control logic diagram of Fig. A.2.3,

The registers are connected as arithmetic units of the same
type as shown in Fig. 2.7. Here gated pulse generators are used
as the delay elements. When the level input is at Ov, the gated
pulse generator produces a negative pulse output upona l to 0

transition of the input flip-flop. This pulse is OR gated to the T
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inputcof the next stage flip-flop. Since a flip-flop changes state
upon receiving a positive going pulse or level change, the trailing
edge of the pulse from the gated pulse generator provides the
trigger. Thus there is a delay of the width of this pulse or about
4.7 p sec.

If the level input to a gated pulse generator is -12v, all
outputs are prevented. Thus the level input can be used for carry
inhibiting. This feature is used when it is desired to clear the
derivativé registers.

Most of the flip-flops receive a T input from a cascaded
NOR 3 gate and NOR 1 gate. The combination of the two NOR
gates forms an OR gate. Instead 6f cascading two NOR gates to
form an OR gate at the T input of other flip-flops, two additional
GATES are connected in as shown. This, in effect, gives a
double T input and is the same as an OR gate.

Additional inputs to the OR gates come from NdR 2 gates.
For these gates, -12v is normally considered a logical 1 and Ov
a logical 0. By reversing this nomenclature, the NOR gate
becomes a NAND gate. Use of the trailing edge of the output of
the NAND gate allows it to be interpreted as an AND gate.9 So the

NOR 2 gates in effect become AND gates.
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There is 2 row of NOR 2 gates below the x register and
also a row below the y register which allows the contents of the
first derivative register to be added in. Which of the output
registers receives the contents of the first derivative register is
determined by the control logic which activates the proper gating
row.

A row of NOR 2 gates below the first derivative register is
used to add in the second derivative register. A row below the
second derivative register allows the third derivative register to
be added in. Also, below each derivative register is a row of
NOR gates which are used to add in contents from tape. The
various add lines are activated by the control logic to allow the
control flow diagram of Fig. 3.4 to be followed.

The independent variable scaling feature mentioned in
Chapters II and III has not been included in the final implementa-
tion of the path generator due to a lack of sufficient logical
elements in the Digital Synthesizer. Thus the magnitude of the
independent variable increment is fixed at 2'=4 units. A positive
increment is then added at the 2'=4 stage of the x and y register.
A negative increment is added in two's complement form. The
address and sign of the independent variable supplied by the input

tape allows the control logic to activate the proper gating line.
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Variable scaling could be achieved by reading the desired
value of the independent variable increment to be used over an
interpolation interval into a storage register. The contents of
this register could then be added to the independent variable
register for each independent variable increment and command.

The derivative registers are cleared by supplying a positive
going pulse to the GATES connected to the reset side of each of
the flip-flops. Any carrys generated by this action are not
propogated through the delay elements since previous to this the
level input to each gated-pulse generator is changed from 0 to
-12v. After the clearing has taken place, the level input is
returned to Ov.

The first seven stages of the x and y registers provide the
outputs to the plotting table. The outputs are taken off alternate

sides of the flip-flops in order to allow their direct use as inputs

to a comparator unit. This is explained in detail in Appendix IIIi. .

Notice that additional non-logical elements are included in
the implementation of the path generator to compensate for
loading effects. Also notice the way in which the sign bit is used
to extend the register length so that the proper two's complement
representation of negative numbers is presented to the next

register.
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Control Logic

The control logic of Fig. A.2.3 implements the control flow

diagram of Fig. 3.4. This logic consists basicly of two gated

[
+
>
D
3

or

provide control o

counterg, one to
one to provide the cyclic addition commands to thé integrators
units. A cycle control flip-flop governs which counter receives
pulses from the pulse generator. At the start of each path, all the
counter flip-flops are set to 0, the cycle control flip-flop is set to
allow pulses to pass on to the input control counter and the stop
control flip-flop is set to allow passage of pulses.

This initializing is done by open circuiting the emitter of the
transistor of the appropriate side of a flip-flop using the reset
button of the Synthesizer. The initial conditions to the x and y
registers are also set in at this time by the same means.

By using trailing edge triggering and the nomenclature that 0
volts represents a logical 1 and -12 volts represents a logical 0,
the NOR gates connected to the counters function as AND ga,tes.9 An
increasing level change output is then produced by the gate as a
counter leaves a particular count. Thus, gates 2, b, candd

produce outputs as the count in the input control counter leaves

1, 3, 5 and 7 respectively. An output is produced by gates e, f and



-96-

¥430v3y
3dvl Ol
ﬂ iNd1ino

21907

TOHLNOD

g2’V 3¥notd

® ® © W D B d® d ® b

“T08LNOD
NOIS

Ol

]
11

ﬁmm,

6

T0YLNOD
S$S3480av

T0HINOD aQav

370AD

$s33QQv

d0ls

NSIS

TOHAINOD
AYYVI

i
ad

1
q

434LNNOD AQ31vHo
TOHLINOD 1NdNI

431NNOJ Q31vo

T0Y1NOD
TO0MLINOD d0ls

HOLVY¥3IN39
3s7nd




=97~

8 as the add control counter leaves the counts 1 modulo 8, 3 modulo
8, and 5 modulo 8 respectively.

The output of gate a resets the carry control flip-flop to
f carrys between stages of the derivative
registers. It also sets the independent variable address control
flip-flop to x and the independent variable sign control flip-flop to
plus. Gate b provides a clear signal to the derivative registers if
the clear hole on the input tape is punched. Otherwise no clear
signal is produced.

The output of gate ¢ sets the carry control flip-flop to again
allow propogation of carrys in the derivative registers. Also the
sign, address, and stop control inputs from the input tape are
gated in. Gate d provides the signal to add inputs from the tape to
the derivative registers.

The 1 to 0 transition of the last flip-flop of the input control
counter resets the cycle control flip-flop to route pulses to the add
control counter.

The output of gate e is used to add the increment of the
independent variable * - to the independent variable register
and to add the first derivative register to the dependent variable
register. The address control flip-flop determines which is the

independent variable register. The sign control flip-flop gives



-98-

the sign of the independent variable increment. These two flip-
flops then control the necessary gating.

Gate f provides the signal to add the contents of the second
he output of
gate g causes the addition of the third derivative register to the
second derivative register.

For the add control counter, those stages beyond the first
three serve as in iteration counter for the add cycle. Since 2.4 add
cycles must take place to cause the independent variable to
increase one unit, and 23 units are needed for an interpolation
interval, 27 add cycles must take place for each interpolation
interval. Thus, seven stages beyond the three needed for the
gating of one add cycle are needed to count the iterations. The add
control counter then has ten total stages.

The 1 to 0 transition of the la\g;t stage of the add control
counter or overflow of the counter means that sufficient add
iterations have occurred for an interval. Thus it is used to set
the cycle control flip-flop to again route pulses to the input
control counter. The 0 to 1 transition of the last stage flip-flop
provides the level change input to cause the tape block reader to

advance one block length. This transition occurs half way
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through the capacity of the add control counter and allows the tape
transient to be completed before a new reading cycle takes place.

The interchange between the operation of the input control

appears, the stop control flip-flop is set to prevent further pulses
from reaching the control counters and thus stops the operation of

the path generator.

Tape Block Reader and Tape Punch

The input tape is read by Model 4112-R ELECTROBLOK
Reader manufactured by the Electronic Engineering Co, of
California. See the photograph of Fig. A.2.4a. This reader
features a stepping motor drive which advances the tape one block
length for each +25v trigger pulse input. The 0 to -12 volt level
change produced by the control logic is used as the input to the
circuit shown in Fig. A.2.5b. This circuit then produces the
appropriate magnitude trigger pulse.

The block reader actually is capable of reading 12 lines of 8
level tape. However, only seven of these lines are needed and
used to provide the input information to the path generator.

- Each output brush is connected by the circuit shown in Fig.

A.2.5a to the appropriate input gate of the path generator. Thus,
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A) TAPE BLOCK READER

B) TAPE PUNCH

FIGURE A.2.4 PHOTOGRAPHS OF
TAPE EQUIPMENT
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a punched hole on 1 on the tape causes a brush to contact the
common cylinder producing a ground level output. A blank or 0 on
the tape insulates the brush from the common cylinder and pro-
duces an open circuit voltage of -12 volts. The loading of this
circuit by an input gate, of course, reduces the magnitude of this
voltage.

The block reader has the feature that the line connecting the
common cylinder to a voltage level, in this case ground, is opened
during tape transient. This prevents the arcing of the brushes.

The input tape to the reader is prepared using the tape punch
shown in the photograph of Fig. A.2.4b. The punching unit is
controlled by a console containing a switch for each of the eight
levels of tape plus a single line punch button. The tape feed hole
is automatically punched each time the punch button is activated.
Other holes are punched by turning on the appropriate column

switch prior to pushing the punch button.
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—-12v
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. OUTPUT TO DERIVATIVE
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FIGURE A.2.5 — TAPE READER CIRGCUITS
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FIGURE A.2.6 — LOGIC MODULE GCIRCUITS



S1IN0¥ID 3TINAOW 219071 = 2'2°'V 3HN9l4

€ YON (@ 2 HON (9
S1NdNI S1NdNI

1nd1no 1nd1ino

% AZI- AS+
n
G YON (8 S1NdNI | HON (V
29% NI 28
. 1L
= H0b Nz =
LNdLNO %89 1NdNI
1Nndino
A"l
Aci- A9+ AZI— A9+




APPENDIX III

DETAI LED DESCRIPTION OF THE CONTROLLED SYSTEM

The purpose of this section ig to describe in detail the two-
dimensional control system which accepts the absolute digital path
control infdrn}atiohi- from the input generator and converts this
information into a graphical record of the generated path. The
constructed system is composed of the following main elements:

1. Two-dimensional crossbar plotter,

2. Feedback encoders and read-out logic,

3. Comparators,  decoders and modulators, and

4. Servo amplifiers, motors and gear trains
This system is represented in block diagram form in Fig. A.3.1.
General operation of such a system was discussed in Chapter I.
The actual controlled system is shown in the photograph of

Fig. A.3.2. The operation of each element will now be described

in detail.

Two-dimensional Crossbar Plotter

In order to provide a continuous graphical output record, a
two-dimensional plotter was constructed. See Fig. A.3.3. This

plotter represents the system which is to be controlled by the
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FIGURE A32 PHOTOGRAPH OF GONTROLLED
SYSTEM
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input generator. In practice this plotter would be replaced by
the actual physical system which is to be controlled. This
physical system could be a machine tool, an automatic drafting
machine, an orthotic arm aid, or any other device requiring two-
dimensional path control.

The plotter is based upon a crossbar mechanism. A
follower device which contains a recording pen is driven by two
shafts which are at right angles to one another. These shafts
pass through linear ball bushings which are mounted in the
follower device. These two right angle shafts provide the x and y
movements of the follower. Thus by simultaneously controlling
the positions of these shaffs the follower can be made to generate
any two-dimensional contouf.

The follower control shafts are moved by cables attached
to brackets at the ends of the shafts. These cable brackets
contain linear ball bushings which ride on shafts mounted in the
corner blocks of the system. Each cable passes over a drive
pulley and an idler pulley.

The two drive pulleys for each coordinate direction are con-
nected by a drive shaft. Each drive shaft is geared to a motor. A

bellows coupling connects each drive shaft directly to an encoder.
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The encoders used in this system produce a seven bit
oﬁtput. Thus any of 27 or 128 distinct outputs are available.
Each quanta zone was chosen to represent 0. 080 inch linear
travel along an axis. Thus the length on any axis represented by
one rotation of the encoder.is 128 x 0. 080 = 10.240 inches. The
plotter thus can construct a contour over a 10.240 inch square
area within an accuracy of 0.080 inch on any axis. In order that
the encoders could be driven directly by the drive shafts, thus
eliminating any gearing.and resultant backlash possibilities, and
also in order that one encoder revolution would represent the full
linear travel of an axis, the pitch circumference of the drive
pulleys was chosen as 10.240 inches giving a pitch radius of
1.630 inches.

The plotter was constructed so that the x and y coordinate
inertias and drives are symmetric. Thus similar dynamic

properties can be expected in the two dimensions.

Feedback Encoders and Readout Logic

The analog feedback positions are converted to digital
representations by Librascope No. 707 V-brush binary encoders.

The basic part of this encoder is a disk with a binary code
pattern as shown in Fig. A.3.4. Ifbrushes are placed on line as

shown, the binary number representing the position of the disk can
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FIGURE A.3.4 — BINARY (CODED DISK
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be read from the brushes. In this example the coded pattern
array is arranged in a series of four zones, corresponding to the
capability of sensing four binary digits. The present position of
the disk represents the binary number 0101.

However, the arrangement of brushes and zones as shown
in Fig. A.3.4 will not work in practice because of the ambiguity
which can occur in reading the coded pattern. To see this
consider the rotation of this sample disk from decimal 7 (0111)
to the decimal 8 (1000) position. All the brush contacts must
change their contacting status simultaneously.

This would require infinitely narrow brushes as well as
perfect alignment of both the brushes and the code zones. The
physical limitations obviously prevent any ideal transition and
some brushes change before others. For the natural binary code,
this can lead to some serious reading errors.

The V-brush method provides for reading out unambiguously
a binary coded disk. The logic for such a system can be deduced
from observation of the nature of the binary code. The sequence
of four bit binary numbers is given in Table A.3-1.

Examination shows that when the least significant digit
c};anges from 0 to 1 in the direction of increasing count none of

the other digits change. Further, when the least significant digit
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TABLE A.3-1

SEQUENCE OF FOUR BIT BINARY NUMBERS

Binary Number Decimal Equivalent
Position

Number, m 3 2 1 0 1 0
; o o0 o0 o 0
0O o0 o 1 1

0O 0 1 0 2

0 o0 1 1 3

0 1 0 o0 4

0 1 0 1 5

0 1 1 0 6

0 1 1 1 7

1 0O 0 o0 8

1 0 o0 1 9

1 0o 1 0 1 0

1 0 1 1 1 1

1 1 0 0 1 2

1 1 0 1 1 3

1 1 1 0 1 4

1 1 1 1 1 5
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changes from 1 to 0 in the increasing count direction, the digit

in the next most significant column always changes. Generalizing,
an increasing transition from 0 to 1 in the mth row always causes
a change in the mth +1 digit.

A further observation can be made from Fig. A.3.4.
Considering an increasing count, when the least significant digit
is 1, the count in the next column has not changed for a minimum
of the width of the least significant digit. When the least signi-
ficant digit is 0, the count in the next column will not change for
a minimum of the width of the least significant digit. Generaliz-
ing, when a digit in the mth column is 1, the digit in the m + 1
column has not changed for a minimum of 2™ rows and
similarly when a digit in the mth column is 0 the digit in the
m + 1 column will not change for a minimum of 2™ rows.

These conclusions lead to a method of reading a natural
binary code pattern unambiguously. Ifa lis read in the least
significant digit, then in the increasing count direction no change
in the next digit has occurred recently. Ifa 0is read in the
least significant digit, a change has occurred recently in the next
digit. Therefore, if two brushes were to read the next digit, one
leading and one lagging the reading line, any recent change or

absence of change could be read. Leading refers to displacement
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in the direction of increasing count; lagging, to displacement in
the direction of decreasing count. The leading brush is read if
the least significant digit is 0 and the lagging brush if the least
significant digit is 1. So the next digit can be accurately read
based upon the reading of the least significant digit.

If the least significant column were removed, the code
pattern would remain the same with the sector representing a row
being twice the size of the original sector. The reasoning that
was applied to the least significant digit can now be applied to the
next digit and consecutively to the remaining columns of the disk.

The placement of the brushes should be symmetrical about
the reading line. The brush spacing for a given digit should be
equal to the segment width of the next lower order digit. The
brushes then fan out in a V-shaped exponential curve. Fig. A.3.5
shows the placement of the brushes on a four digit disk. For the
reading line shown, the number to be read is 0101. Since the
least significant brush reads 1, the lagging brush is read in
column 1. This brush reads 0 so the lead brush is read in
column 2. This brush reads 1 so the lagging brush is selected
in column 3, which reads 0. Note that each brush that is read is
well within the segment which is to be read, eliminating

ambiguity.
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FIGURE A.3.5 — V-BRUSH READOUT
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The difficulty with this type of readout is that a separate
logic circuit is needed with each column to select the proper
brush. The Librascope encoder used has seven columns
producing 27 = 128 distinct readout numbers. A brush is
grounded for a 1, and is open circuited for a 0. Three stages of
the seven stage logic that was used in reading the disk are
shown in Fig. A.3.6.

In this circuit the least significant brush is BO’ the leading

brush in column 1 is B, and the lagging brush B Similar

1 1’

notation applies to the remaining stages.

The means of brush selection is based upon the inversion

property of a grounded emitter transistor amplifier. If B0 is

open circuited, i.e., a 0 is read in column 0, an inverted signal

which tends toward -12 volts is fed to the base of the B1

transistor. A ground signal is fed to the base of the Bl transistor.

Thus only the signal to the emitter of the B1 transistor affects

the output which appears at the junction of the collectors of the
Bl and i-31 transistors since only the B1 transistor can be biased
into operation. If B1 is open circuited corresponding to a 0

being read, the output tends toward -12 volts. If B1 is

grounded the output is ground level.
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If BO is grounded representing a binary 1, a signal
tending toward ~12 volts appears at the base of the El transistor

and a ground signal appears at the base of the B1 transistor.

Thus only the ]':’,1 signal can appear at the output collector
junctions. Hence, if the input to the first stage is 0, the leading
brush of the next stage is read. If the input to the first stage is 1,
the lagging brush of the next stage is read. This means of brush
selection is propagated through the stages.

In the above explanation it has been stated that a voltage
tends toward -12 volts. In each case this signal terminates some-
where in the base of a grounded emitter amplifier. The maximum
drop across the base~-emitter junction is a few tenths of a volt so
that signals which tend toward -12 volts are actually approximately
-0.2 volts.

The inverted brush input for each stage is inverted once
again by a grounded-base amplifier. The output of this
amplifier drives an indicator light and also serves as the output
for every other stage. Due to the nature of the comparison
operation, every other output must be inverted. At the output of
the odd stages, -12 voits represknts a 1 and 0 volts represents a

0. The inverse is true for the even stages.
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The actual brush selection takes place in serial form.
However, the propagation is accomplished with such rapidity that
the brush selection may be considered to take place in parallel
form. The readout of the stages in parallel form is thus

justified.

Comparators, Decoders and Modulators

The comparator is basically an arithmetic subtraction
unit which provides the sign and magnitude of the difference
between two natural binary coded numbers, the input command
number and the encoder feedback number. This unit, however,
solves a subtraction problem which is simpler than that
encountered in a general purpose computer since in this case both
the minuend and the subtrahend are always positive numbers.
For a general purpose computer both arguments may be either
positive or negative necessitating additional sign and operation
determination logic and possible special coding schemes for
negative numbers. The digital subtraction operation is reduced
to an addition operation by the following means. The one's
complement of the minuend is added to the subtrahend. The

resuit is then treated according to the following rules:
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1. If there is no overflow carry from the most
significant stage, the result is positive and
equal in magnitude to the one's complement
of the sum.

2, If there is an overflow carry, the result is

negative and equal in magnitude to the sum
plus 1.

To see how these rules are derived consider subtracting
the two inherently positive natural binary numbers A(minuend)
and B(subtrahend), i.e., it is desired to find (A) - (B). If every
bit of the binary number A is inverted, the one's complement of

A is obtained which is given by:
Al 2"-1-a

where Al is the one's complement and n is the number of bits in

A. The subtraction operation desired is then:

A)-B)=2"-1-a'-B
ot -@alemy -t
Rearranging,
AliB-2"_(a-B)-1 | (A.3-1)
or,

Al4B=2"+(B-4a)-1 (A.3-2)
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There are two possibilities to consider, A > B and A< B.

1. If A > B, the difference is positive or zero. Applying
Eq. A. 3-1 shows that A1 + B is then the one's
complement of the desired difference. No overflow
carry results.

2. If A< B, the difference is negative. Eq. A. 3-2
shows that there is an overflow (2") and that the
correct difference may be obtained by adding 1 to
the reéult of A1 + B.

Thus the rules previously stated for reducing the sub-

traction operation to one of addition have been derived.

stage for binary numbers can be.drived from Table A, 3-2.

The equations governing the addition operation for one

Here

Ai and Bi are the ith addend and augend bits to be added, Ci is

. . . . .th
the incoming carry from the previous stage, Si isthe i sum

bit, and Ci +

1 is the outgoing carry. The reduced logical

equations for the sum and carry bits are:

5;=A, ®B,@C, (A.3-3)

C.=AB, +B.C. +A.C, {A.3-4)
1 11 11 11
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TABLE A.3-2

BINARY ADDITION TRUTH TABLE

A, 0 1 0 1 0 1 0
B, 0 0 1 1 0 0 1
C, 0 0 0 0 1 1 1
S, 0 1 1 0 1 0 0
Cit1 0 0 0 1 0 1 1
S. =ABC. +AB.C +ABC. +A.B.C.
1 111 1 11 11 1 1 1 1
=A ®B. ®C.
1 1 1
C.., =AB.C. +A.B.C., + AB.C. +A.B.C.
i+l i1 1 i1 i ii i 11
=AB,+B.C, +A.C.
1 1 11 1 1
s =ABC +A.BC +A.BC. +AB.C
1 111 3 11 i1 1 1
A +B +C
1 1 1
C =ABC +ABC +AB.C +ABC
i+l ii1 ii i ii i1 i
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Also note that

S.=A. @B &C (A.3-5)
1 1 1 1
G, =AB+BT+AT (A.3-6)

This symmetry will be used later in constructing a full parallel
adder.

These equations have been implemented using threshold
logic techniques in a manner suggested by Kolb, 1 Referring to
Table A.3-2 and Eq. A.3-4 it is seen that a carry is generated
from the ith position whenever any two or all three of the Ai’ Bi’
and Ci bits are present, Thus a transistor circuit with a
threshold such that the transistpr will be driven from a non-
conducting to a conducting state whenever two or more inputs are
present will produce outgoing carry information. Such a circuit
is shown using transistor Q1 in Fig. A.3.7. Note that if the same
voltage levels are used to represent logical 1's and 0's at the
input and output, the riega:tion of the carry function is produced.

For generation of the sum bit, a circuit is needed which
will go to a conducting state whenever an odd number of inputs is
present but will remain non-conducting for an even number of
inputs. Such a circuit is shown using transistor Q2 in Fig.. A.3.7.

- It is achieved using the output of the carry out circuit as an
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additional input. The method of operation is as follows.
Transistor Q2 is non-conducting with no inputs. No carry is
being generated. Any one of the inputs. Ai’ Bi’ or Ci can cause
it to conduct. If, however, two or more of these inputs are
present, a carry is generated. This carry is used to inhibit

the transistor from going into the conducting state until all three
inputs are present. Again note that if the same voltage levels
are used to represent logical 1's and 0's at the input and output,
the negation of the sum bit is obtained.

Utilizing the symmetric Eqs. A.3-3 through A.3-6, this
basic circuit can be combined to form a full parallel adder as
shown in Fig. A.3.8.. A minimum carry propagation time is
achieved for this logic since the carry only has to pass through
one transistor per stage. Alternate sum digits must be inverted
but this does not effect the carry propagation times. The inverter
circuit used is also shown in Fig. A.3.7.

Since the sum or inverter transistors are not loaded in
the threshold circuit, they can be used to drive a voltage ladder
type of digital to analog decoder. The decoder used is also

shown in Fig. A. 3.8.
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The differential voltage output, Vo is produced by two

component voltages, V _, the output voltage from the voltage

OL

ladder alone, and V__, the output voltage from the carry.

0C

The output of the voltage ladder is

E_(p)
Vv =

oL Zn

where Es is the supply (in this case -12 volts), p is the binary
number input to the ladder, and n is the number of stages. 21

The carry output voltage is given by:

Voc = EgCyg

where C8 is the Boolean carry function.

If the minuend is greater than or equal to the subtrahend,

Cg=0and Vg, =0. Thenp=§1§2...§7=(2n-1-5), and
\ =-E—S(zn-1-s).
oL ",
But,
s=a'+B=2"-(aA-B)-1.
So’ ES n n
V0=V0L=£K(Z -1-2"+(A-B)+1)
ES
V,=— (a-B) (A.3-7)

2
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Thus the output voltage is proportional to (A - B) for A > B.

=1, Thenp=S5S5 ...85 =2n-1-(B-A=1).

" IfA< B, C 15, 7

8

E
=2".1-B-A-1)] -E

| VO=VQL-VOC=[n .
5 2 i
ES
VO =2n (A - B) (A. 3—8)

This is the same as Eq. A.3-7, so that a differential voltage
output is obtained which is proportional in both magnifude and
sign to the difference of the inputs to the comparator. Any drift
in the supply affects only the proportionality constant since all
stages are driven by one voltage supply.

The differential signal is modulated so that it can be used to
drive the 60 cps. ac servomotors of the positioning table. This
modulation is accomplished as shown in Fig. A.3.9.

The voltage generated from the C_ transistor is applied to

8
the center tap of the primary of UTC Al9 transformer. The
output from the voltage ladder is applied to the wiper of a C.P.
Clare HGS - 1004 mercury wetted contact chopper relay. The
outputs of the chopper relay are connected to the ends of the
transformer primary. Thus the differential voltage is applied

alternately across the two halves of the transformer primary,

producing a proportional signal in the secondary which has the
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proper phasing. This signal is filtered before using it to drive
the servo amplifier.

The drive to the chopper is provided by a standard filament
transformer with some additional phase iead eilements which
allow proper phasing of the modulated voltage with respect to

line voltage.

Servo Amplifiers, Motors, and Gear Trains

The two-phase ac servomotor used was a Diehl Manufac-
turing Co. No. FPE 49-56-2 15 Watt Low Inertia Servomotor
with an ac tachometer and a high impedance control winding.
The voltage on the control winding determines the motor speed
while its phase determines the direction of motor rotation.

The prime mover amplifier used to supply this motor is
shpwn in Fig. A.3.10. Because of their high impedance, the
control windings are supplied directly by a pair of 6L6 tubes in
push-pull eliminating the need for an output transformer. The
phase of the tachometer feedback can be adjusted by the network
shown. The 100K potentiometer controls the feedback gain. The
signal from the wiper of this potentiometer is combined in the
first stage with the signal from the modulator to produce the

difference since the two signals are 180° out of phase. This
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difference is amplified and inverted to drive the output tubes in
push-pull operation. A small ac signal is used to bias the center
tap of the secondary of the transformer from the tachometer to
null out the small zero speed signal.

The two phase ac Diehl servomotor described above was
chosen because the prime mover power level is sufficient for the
needed positioning. There is no brush friction and the velocity
feedback allows the motor time constants to be reduced. The
stall torque can be easily handled by the instrument gear trains.
Each gear train was breadboarded using three meshes of ratios.

5:1, 5:1, and 1.5:1 providing an overall ratio of 37.5:1.



APPENDIX IV

INITIAL CONDITION SAMPLE CALCULATIONS

The initial conditions to the derivative registers at the start
of each path segment are calculated usiﬁg Eqs. 2-28, 2-29 and

2-30. These equations are repeated here for convenience.

1 Ayy AV
1 = — - -
1,2 3
3
A Yo
y''(xy) =—s— (2-30)
0 o3

Sample calculations for the initial conditions introduced at
point 23 of the closed contour and point 1 of the spiral will now be
presented. Also to be presented is the proper tape coding of these
conditions.

At point 23 of the closed contour, x is the dependent

variable. The values of the differences are Ax23 = -1, A2x23 = -1,

-134-
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and A3x23 = =2. These are found from Fig. 4.3. Interchange of

the roles of x and y in Eqs. 2-28, 2-29 and 2-30 then gives

The binary coding of the first derivative entry is then
-0.001 00101010 10101010

which when converted to two's complement form is

11.110 11010101 01010110
S o ¥

To conform with the tape format, this is entered on the three
lines of tape used for the first derivative as marked off. The
second derivative entry becomes

0.000100 00000000 x 22

Recalling that the highest order bit to be entered on the tape is
2"3, this is then entered on the two lines representing the second
derivative as marked off. The third derivative entry becomes

-.0010000 x2°°
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which when converted to two's complement form is
1.1110000 x 277
—_

This conforms to the tape format and is entered on the third
derivative line of the tape. These entries are shown in Block 23
of Fig. 4.5.
. . 2 3
At point 1 of the spiral, Ayo ==-11, A Yo = 2, and A Yo = 0.

These are found from Fig. 4.7. Using the appropriate formulas,
yleg) =27° (-11 -1) = 273 (-12),
y“(xo) = 2-6 (2) = 2-5, and

y1i(xg) = 0

The binary coding of the entry to the first derivative
register is then

-1.100 00000000 00000000

which when converted to two's complement and the proper format
gives the entry to the tape lines representing the first derivative as

10.100 00000000, 00000000,
N et " 2\

The coding of the second derivative entry becomes

-2
0.001000 00000000, x 2
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To conform to the tape format, this is entered as marked off.
The coding to the third derivative entry is all O's. These entries

are shown in Block 1 of Fig. 4. 8.

derivative registers must be coded using the tape format shown

in Fig. 4.4. To do this, Tables A.4-~1, A.4-2 and A.4-3 are

used. The first two tables contain the coding of - Zl}'{ A4

(dependent variable) which is the correction term to the first

derivative register. The last table contains the tape coding for

—13- A4 (dependent variable) which is the correction term to the
h

third derivative register. Remember that a straight binary
representation is used for positive corrections and a two's

complement representation is used for negative corrections.
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TABLE A.4-1

CODING TABLE FOR FOURTH DIFFERENCE CORRECTIONS

TO THE FIRST DERIVATIVE REGISTER

= 8

Line 1 Line 2 Line 3

A4y 87654321 87654321 87654321
0 00000000 00000000 00000000
+1 - 00011111 11010101 01010110
+2 00011111 10101010 10101011
+3 00011111 10000000 00000000
+4 00011111 01010101 01010110
+5 00011111 00101010 10101011
+6 00011111 00000000 00000000
+7 00011110 11010101 01010110
+8 00011110 10101010 10101011
+9 00011110 10000000 00000000
+10 00011110 01010101 01010110
+11 00011110 00101010 10101011
+12 00011110 00000000 00000000
+13 00011101 11010101 01010110
+14 00011101 10101010 10101011
+15 00011101 10000000 00000000
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TABLE A. 4-2

CODING TABLE FOR FOURTH DIFFERENCE CORRECTIONS

TO THE FIRST DERIVATIVE REGISTER

Line 1 Line 2 Line 3

A4y 87654321 87654321 87654321
0 00000000 00000000 00000000
-1 00000000 00101010 10101010
-2 00000000 01010101 01010101
-3 00000000 10000000 00000000
-4 00000000 10101010 10101010
-5 00000000 11010101 01010101
-6 00000001 00000000 00000000
-7 00000001 00101010 10101010
-8 00000001 01010101 01010101
-9 00000001 10000000 00000000
-10 00000001 10101010 10101010
-11 00000001 11010101 01010101
-12 00000010 00000000 00000000
-13 00000010 00101010 10101010
-14 ~ 00000010 01010101 01010101
-15 00000010 10000000 00000000
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TABLE A. 4-3

TO THE THIRD DERIVATIVE REGISTER

Positive Negative
87654321 A4y 8765432
00000000 0 0000000
00001000 1 1111100
00010000 2 1111000
00011000 3 1110100
00100000 4 1110000
00101000 5 1101100
00110000 6 1101000
00111000 7 1100100
01000000 8 1100000
01001000 9 1011100
01010000 10 1011000
01011000 11 1010100
01100000 12 1010000
01101000 13 1001100
01110000 14 1001000
01111000 15 1000100
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